

Features:

- 600 V EmCon technology
- Fast recovery
- Soft switching
- Low reverse recovery charge
- Low forward voltage
- 175 °C junction operating temperature
- Easy paralleling
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models: http://www.infineon.com/emcon/

Applications:

- Welding
- Motor drives

Туре	V_{RRM}	I _F	V _{F,Tj=25°C}	$T_{\rm j,max}$	Marking	Package
IDW75E60	600V	75A	1.65V	175°C	D75E60	PG-TO-247-3-21

Maximum Ratings

Parameter	Symbol	Value	Unit
Repetitive peak reverse voltage	V_{RRM}	600	V
Continuous forward current	I _F		Α
$T_{\rm C}$ = 25°C		120	
$T_{\rm C}$ = 90°C		82	
<i>T</i> _C = 100°C		75	
Surge non repetitive forward current	I _{FSM}	220	Α
$T_{\rm C}$ = 25°C, $t_{\rm p}$ = 10 ms, sine halfwave			
Maximum repetitive forward current	I _{FRM}	225	Α
$T_{\rm C}$ = 25°C, $t_{\rm p}$ limited by $t_{\rm j,max}$, D = 0.5			
Power dissipation	P _{tot}		W
T _C = 25°C		300	
<i>T</i> _C = 90°C		170	
<i>T</i> _C = 100°C		150	
Operating junction and storage temperature	T _j , T _{stg}	-55+175	°C
Soldering temperature 1.6mm (0.063 in.) from case for 10 s	Ts	260	°C

Value

Therma	ΙR	esi	sta	nce

Parameter

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic	, ,			1
Thermal resistance,	R_{thJC}		0.5	K/W
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Symbol

				typ.	max.	
Static Characteristic						
Collector-emitter breakdown voltage	V_{RRM}	I _R =0.25mA	600	-	-	V
Diode forward voltage	V _F	I _F =75A				
		<i>T</i> _j =25°C	-	1.65	2.0	
		<i>T</i> _j =175°C	-	1.65	-	
Reverse leakage current	I _R	V _R =600V				μΑ
		<i>T</i> _j =25°C	_	-	40	
		T;=175°C	_	_	1000	

Conditions

Dynamic Electrical Characteristics

Diode reverse recovery time	t_{rr}	T _j =25°C	-	121	-	ns
Diode reverse recovery charge	Qrr	V_{R} =400V, I_{F} =75A,	-	2.4	-	μC
Diode peak reverse recovery current	I _{rr}	$dI_F/dt=1460A/\mu s$	-	38.5	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	dI _{rr} /dt		-	921	-	A/µs

Diode reverse recovery time	t_{rr}	<i>T</i> _j =125°C	-	155	-	ns
Diode reverse recovery charge	Q_{rrm}	V_{R} =400V, I_{F} =75A,	-	4.4	-	μC
Diode peak reverse recovery current	I _{rr}	$dI_F/dt=1460A/\mu s$	-	46.6	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	dI _{rr} /dt		-	960	-	A/µs

Diode reverse recovery time	t_{rr}	<i>T</i> _j =175°C	-	182	-	ns
Diode reverse recovery charge	Q _{rrm}	V_{R} =400V, I_{F} =75A,	ı	5.8	-	μC
Diode peak reverse recovery current	I _{rr}	$dI_F/dt=1460A/\mu s$	1	56.2	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	dI _{rr} /dt		-	1013	-	A/µs

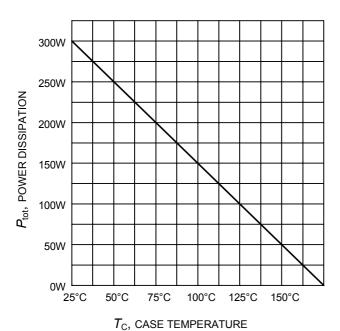
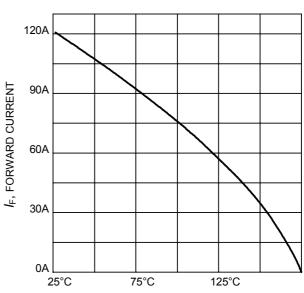



Figure 1. Power dissipation as a function of case temperature $(T_i \le 175^{\circ}\text{C})$

 $T_{\rm C}$, CASE TEMPERATURE Figure 2. Diode forward current as a function of case temperature $(T_{\rm i} \le 175^{\circ}{\rm C})$

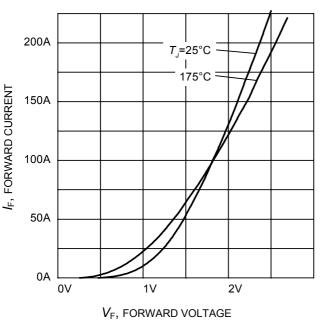


Figure 3. Typical diode forward current as a function of forward voltage

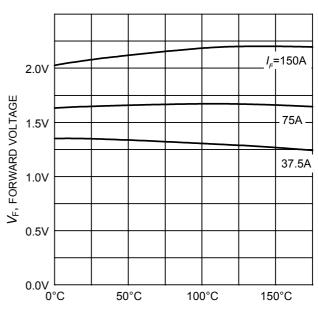


Figure 4. Typical diode forward voltage as a function of junction temperature

 $T_{\rm J}$, JUNCTION TEMPERATURE

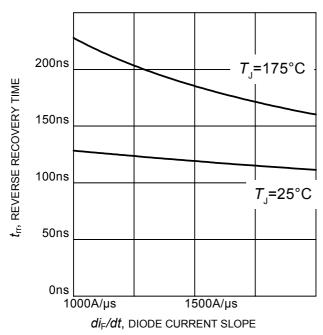
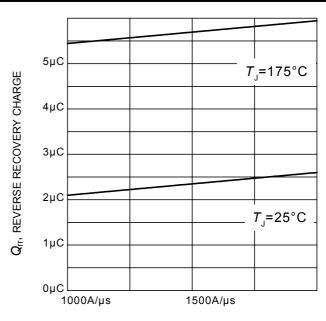
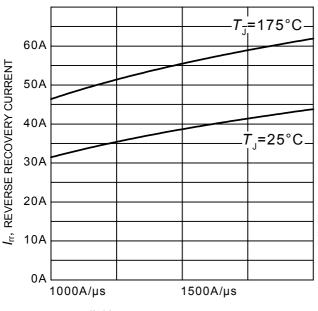
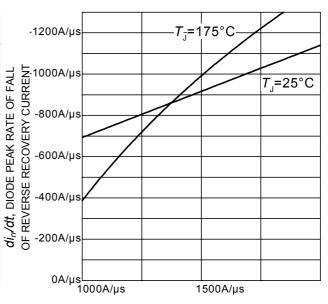




Figure 5. Typical reverse recovery time as a function of diode current slope $(V_R=400V, I_F=75A,$ Dynamic test circuit in Figure E)

di_F/dt, DIODE CURRENT SLOPE


Figure 6. Typical reverse recovery charge as a function of diode current slope $(V_R = 400V, I_F = 75A, Dynamic test circuit in Figure E)$

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE

Figure 7. Typical reverse recovery current as a function of diode current slope $(V_D = 400)V_D = 75A$

 $(V_R = 400V, I_F = 75A,$ Dynamic test circuit in Figure E)

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE

Figure 8. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope $(V_R=400V,\ I_F=75A,$ Dynamic test circuit in Figure E)

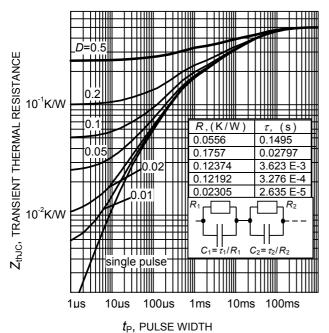
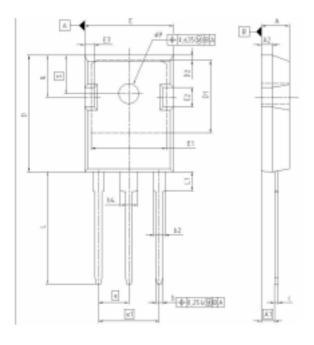



Figure 9. Diode transient thermal impedance as a function of pulse width $(D=t_P/T)$

PG-TO247-3-1

	MILLIM	ETERS	INCHES			
DIM	MIN	MAK	MIN	MAX		
A	4,963	5.157	0.193	0.203		
A1	2,273	2.52T	0.092	0.096		
A2	1.953	2.107	0.075	0.094		
b	1.073	1,327	0.047	0.052		
b2	1.901	2.386	0.075	0.094		
64	2.870	3,454	0.113	0.136		
e.	0.549	0.752	0,004	0.030		
0	29.823	21.077	0.820	0.830		
D1	17.323	17,831	0.692	0.702		
D2	1.083	1.317	0.042	0.052		
E	15.773	16,027	0.621	0,631		
E1	13,893	14,147	0.547	0.557		
E2	3.883	3.907	0.945	0.155		
E3	1,863	1.997	0.000	0.076		
	5.4	50	0.2	195		
et	10.5	900	0.4	130		
N				1		
L	20.053	20.307	0.700	0.799		
L1	4.166	4,472	0.104	0.176		
eP	3.550	3,661	0.140	0.144		
q	5,496	5.747	0.290	0.228		
5	9.043	6.297	0.238	0.248		

Published by Infineon Technologies AG, Bereich Kommunikation Am Campeon 1-12, D-85579 Neubiberg © Infineon Technologies AG 2006 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.